Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 23 2024 00:42:24
%S 13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,234,260,273,
%T 286,312,325,338,351,364,390,416,429,455,468,507,520,546,572,585,624,
%U 637,650,676,702,715,728,780,819,832,845,858,910,936,975,1001,1014,1040
%N 13-smooth numbers which are not 11-smooth.
%C Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v >= 0, w > 0.
%H Amiram Eldar, <a href="/A080196/b080196.txt">Table of n, a(n) for n = 1..10000</a>
%F From _Amiram Eldar_, Nov 10 2020: (Start)
%F a(n) = 13 * A080197(n).
%F Sum_{n>=1} 1/a(n) = 77/192. (End)
%e 78 = 2*3*13 is a term but 77 = 7*11 is not.
%t Select[Range[1000], FactorInteger[#][[-1, 1]] == 13 &] (* _Amiram Eldar_, Nov 10 2020 *)
%o (PARI) {m=1040; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=0,floor(log(m/d)/log(11)), e=d*11^v; for(w=1,floor(log(m/e)/log(13)),z=concat(z,e*13^w))))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
%o (Python)
%o from sympy import integer_log, prevprime
%o def A080196(n):
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
%o def f(x): return n+x-g(x,13)
%o return 13*bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024
%Y Cf. A080197, A051038.
%K easy,nonn
%O 1,1
%A _Klaus Brockhaus_, Feb 10 2003