OFFSET
1,1
COMMENTS
Numbers of the form 7*2^r*3^s*5^t*7^u with r, s, t, u >= 0.
Multiples of 7 which are members of A002473. Or multiples of 7 with the largest prime divisor < 10.
Numbers whose greatest prime factor (A006530) is 7. - M. F. Hasler, Nov 21 2018
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 7 * A002473(n). - David A. Corneth, Nov 22 2018
Sum_{n>=1} 1/a(n) = 5/8. - Amiram Eldar, Nov 10 2020
EXAMPLE
28 = 2^2*7 is a term but 30 = 2*3*5 is not.
MATHEMATICA
Select[Range[999], FactorInteger[#][[-1, 1]] == 7 &] (* Giovanni Resta, Nov 22 2018 *)
PROG
(PARI) A080194_list(M)={my(L=List(), a, b, c); for(r=1, logint(M\1, 7), a=7^r; for(s=0, logint(M\a, 3), b=a*3^s; for(t=0, logint(M\b, 5), c=b*5^t; for(u=0, logint(M\c, 2), listput(L, c<<u))))); Set(L)} \\ Could be replaced by smooth(primes(4), M) from A051037. - Edited by M. F. Hasler, Nov 22 2018
(PARI) select( is_A080194(n)={n>1 && vecmax(factor(n, 7)[, 1])==7}, [0..10^3]) \\ Defines is_A080194(), used elsewhere. The select() command is a check and illustration. For longer lists, use list() above. - M. F. Hasler, Nov 21 2018
(Python)
from sympy import integer_log
def A080194(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 7)[0]+1):
for j in range(integer_log(m:=x//7**i, 5)[0]+1):
for k in range(integer_log(r:=m//5**j, 3)[0]+1):
c -= (r//3**k).bit_length()
return c
return bisection(f, n, n)*7 # Chai Wah Wu, Sep 17 2024
(Python) # faster for initial segment of sequence
import heapq
from itertools import islice
from sympy import primerange
def A080194gen(p=7): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
while True:
v = heapq.heappop(h)
if v != oldv:
yield 7*v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A080194gen(), 65))) # Michael S. Branicky, Sep 17 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Klaus Brockhaus, Feb 10 2003
STATUS
approved