login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085126
Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10.
8
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 45, 48, 54, 60, 63, 72, 75, 81, 84, 90, 96, 105, 108, 120, 126, 135, 144, 147, 150, 162, 168, 180, 189, 192, 210, 216, 225, 240, 243, 252, 270, 288, 294, 300, 315, 324, 336, 360, 375, 378, 384, 405, 420, 432, 441, 450
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10001 (first 1001 terms from Harvey P. Dale)
FORMULA
a(n) = 3*A002473(n). - Chai Wah Wu, Sep 18 2024
Sum_{n>=1} 1/a(n) = 35/24. - Amiram Eldar, Sep 23 2024
MATHEMATICA
Select[3*Range[200], FactorInteger[#][[-1, 1]]<10&] (* Harvey P. Dale, Apr 10 2019 *)
PROG
(Python)
from sympy import integer_log
def A085126(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 7)[0]+1):
for j in range(integer_log(m:=x//7**i, 5)[0]+1):
for k in range(integer_log(r:=m//5**j, 3)[0]+1):
c -= (r//3**k).bit_length()
return c
return bisection(f, n, n)*3 # Chai Wah Wu, Sep 17 2024
(Python) # faster for initial segment of sequence
import heapq
from itertools import islice
def A085126gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
while True:
v = heapq.heappop(h)
if v != oldv:
yield 3*v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A085126gen(), 65))) # Michael S. Branicky, Sep 17 2024
CROSSREFS
Intersection of A008585 and A002473.
Sequence in context: A194423 A059563 A292641 * A190083 A117124 A323422
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Jul 06 2003
EXTENSIONS
More terms from David Wasserman, Jan 28 2005
Offset changed to 1 by Michael S. Branicky, Sep 17 2024
STATUS
approved