login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051038 11-smooth numbers: numbers whose prime divisors are all <= 11. 38
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A155182 is a finite subsequence. - Reinhard Zumkeller, Jan 21 2009
From Federico Provvedi, Jul 09 2022: (Start)
In general, if p=A000040(k) is the k-th prime, with k>1, p-smooth numbers are also those positive integers m such that A000010(A002110(k))*m == A000010(A002110(k)*m).
With k=5, p = A000040(5) = 11, the primorial p# = A002110(5) = 2310, and its Euler totient is A000010(2310) = 480, so the 11-smooth numbers are also those positive integers m such that 480*m == A000010(2310*m). (End)
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (First 5000 terms from Reinhard Zumkeller)
Eric Weisstein's World of Mathematics, Smooth Number.
FORMULA
Sum_{n>=1} 1/a(n) = Product_{primes p <= 11} p/(p-1) = (2*3*5*7*11)/(1*2*4*6*10) = 77/16. - Amiram Eldar, Sep 22 2020
MATHEMATICA
mx = 150; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}] (* Robert G. Wilson v, Aug 17 2012 *)
aQ[n_]:=Max[First/@FactorInteger[n]]<=11; Select[Range[140], aQ[#]&] (* Jayanta Basu, Jun 05 2013 *)
Block[{k=5, primorial:=Times@@Prime@Range@#&}, Select[Range@200, #*EulerPhi@primorial@k==EulerPhi[#*primorial@k]&]] (* Federico Provvedi, Jul 09 2022 *)
PROG
(PARI) test(n)=m=n; forprime(p=2, 11, while(m%p==0, m=m/p)); return(m==1)
for(n=1, 200, if(test(n), print1(n", ")))
(PARI) list(lim, p=11)=if(p==2, return(powers(2, logint(lim\1, 2)))); my(v=[], q=precprime(p-1), t=1); for(e=0, logint(lim\=1, p), v=concat(v, list(lim\t, q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
(Magma) [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(11)]; // Bruno Berselli, Sep 24 2012
(Python)
import heapq
from itertools import islice
from sympy import primerange
def agen(p=11): # generate all p-smooth terms
v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(agen(), 67))) # Michael S. Branicky, Nov 20 2022
CROSSREFS
Subsequence of A033620.
For p-smooth numbers with other values of p, see A003586, A051037, A002473, A080197, A080681, A080682, A080683.
Sequence in context: A033637 A084034 A084347 * A140332 A155182 A096076
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:41 EST 2023. Contains 367539 sequences. (Running on oeis4.)