

A084034


Numbers which are a product of repeateddigit numbers A010785.


11



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 111, 112, 120, 121, 125, 126, 128
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Numbers which can be written as a*b*c*... where a, b, c are numbers whose decimal expansions are repetitions of a single digit.
Superset of A051038. The first numbers in this sequence but not in A051038 are 111, 222, 333, 444, 555.  R. J. Mathar, Sep 17 2008
Closed under multiplication.
Multiples of 1digit primes and numbers of the form (10^n  1) / 9. (End)


LINKS



EXAMPLE

99 is a member since 99 = 3*33.
9768 is a member since 9768= 2*22*222.
111*2*33*44 = 322344 is a member.


MAPLE

isA010786 := proc(n) if nops(convert(convert(n, base, 10), set)) = 1 then true; else false ; fi; end: isA084034 := proc(n, a010785) local d ; if n = 1 then RETURN(true) ; fi; for d in ( numtheory[divisors](n) minus{1} ) do if d in a010785 then if isA084034(n/d, a010785) then RETURN(true) ; fi; fi; od: RETURN(false) ; end: nmax := 1000: a010785 := [] : for k from 1 to nmax do if isA010786(k) then a010785 := [op(a010785), k] ; fi; od: for n from 1 to nmax do if isA084034(n, a010785) then printf("%d, ", n) ; fi; end: # R. J. Mathar, Sep 17 2008


CROSSREFS

A002473 gives products of singledigit numbers.


KEYWORD

base,nonn


AUTHOR



EXTENSIONS



STATUS

approved



