The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140332 Products of two palindromes in base 10. 3
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 54, 55, 56, 63, 64, 66, 72, 77, 81, 88, 99, 101, 110, 111, 121, 131, 132, 141, 151, 154, 161, 165, 171, 176, 181, 191, 198 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS GeneviÃ¨ve Paquin, p. 5: "Lemma 3.7: a Christoffel word can always be written as the product of two palindromes." Products of two palindromes in base 10 may be either a palindrome (e.g., 202 * 202 = 40804} or a nonpalindrome (e.g., 2 * 88 = 176, or 22 * 33 = 726}. Contains A115683 and A141322 as proper subsets. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 GeneviÃ¨ve Paquin, On a generalization of Christoffel words: epichristoffel words, arXiv:0805.4174 [math.CO], 2008-2009. FORMULA {i*j such that i is in A002113 and j is in A002113} = A002113 UNION A115683. MAPLE digrev:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end: N:=3: Res:= \$0..9: for d from 2 to N do   if d::even then     m:= d/2;     Res:= Res, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1);   else     m:= (d-1)/2;     Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1);   fi od: Palis:= [Res]: Res:= 0: for i from 2 to nops(Palis) while Palis[i]^2 <= 10^N do   for j from i to nops(Palis) while Palis[i]*Palis[j] <= 10^N do      Res:= Res, Palis[i]*Palis[j]; od od:sort(convert({Res}, list)); # Robert Israel, Jan 06 2020 MATHEMATICA pal = Select[ Range[0, 200], # == FromDigits@ Reverse@ IntegerDigits@ # &]; Select[ Union[ Times @@@ Tuples[pal, 2]], # <= 200 &] (* Giovanni Resta, Jun 20 2016 *) CROSSREFS Cf. A002113, A115683, A141322. Sequence in context: A084034 A084347 A051038 * A155182 A096076 A108864 Adjacent sequences:  A140329 A140330 A140331 * A140333 A140334 A140335 KEYWORD easy,nonn,base AUTHOR Jonathan Vos Post, May 28 2008 EXTENSIONS Data corrected by Giovanni Resta, Jun 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 11:33 EDT 2021. Contains 343942 sequences. (Running on oeis4.)