login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135499
Numbers for which Sum_digits(odd positions) = Sum_digits(even positions).
7
11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 220, 231, 242, 253, 264, 275, 286, 297, 330, 341, 352, 363, 374, 385, 396, 440, 451, 462, 473, 484, 495, 550, 561, 572, 583, 594, 660, 671, 682, 693, 770, 781, 792, 880, 891, 990
OFFSET
1,1
COMMENTS
Conjecture: this is a subsequence of A008593 (verified for the first 50 thousand terms). - R. J. Mathar, Feb 10 2008
Subsequence of A008593. - Zak Seidov Feb 11 2008
If k is present, so is 10*k. - Robert G. Wilson v, Jul 13 2014
As Seidov said, a subsequence of multiples of 11. That follows trivially from the divisibility rule for 11. - Jens Kruse Andersen, Jul 13 2014
A225693(a(n)) = 0. - Reinhard Zumkeller, Aug 08 2014
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (first 119 terms from Paolo P. Lava and Giorgio Balzarotti)
EXAMPLE
594, 1023, and 1397 are terms:
594 -> 4 + 5 = 9;
1023 -> 3 + 0 = 2 + 1;
1397 -> 7 + 3 = 9 + 1.
MAPLE
P:=proc(n) local i, k, w, x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i; while k>0 do x:=x+(k-(trunc(k/10)*10)); k:=trunc(k/100); od; if w=2*x then print(i); fi; od; end: P(3000);
# Alternative:
filter:= proc(n)
local L, d;
L:= convert(n, base, 10);
d:= nops(L);
add(L[2*i], i=1..floor(d/2)) = add(L[2*i-1], i=1..floor((d+1)/2))
end proc:
select(filter, [ 11*j $ j= 1 .. 10^4 ]); # Robert Israel, May 28 2014
MATHEMATICA
dQ[n_]:=Module[{p=Transpose[Partition[IntegerDigits[n], 2, 2, 1, 0]]}, Total[First[p]]== Total[Last[p]]]; Select[Range[1000], dQ] (* Harvey P. Dale, May 26 2011 *)
PROG
(Haskell)
a135499 n = a135499_list !! (n-1)
a135499_list = filter ((== 0) . a225693) [1..]
-- Reinhard Zumkeller, Aug 08 2014, Jul 05 2014
CROSSREFS
Cf. A060979.
Cf. A225693.
Sequence in context: A048841 A059632 A008593 * A080195 A004920 A136613
KEYWORD
easy,nonn,base
AUTHOR
STATUS
approved