login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers for which Sum_digits(odd positions) = Sum_digits(even positions).
7

%I #32 May 09 2021 11:19:44

%S 11,22,33,44,55,66,77,88,99,110,121,132,143,154,165,176,187,198,220,

%T 231,242,253,264,275,286,297,330,341,352,363,374,385,396,440,451,462,

%U 473,484,495,550,561,572,583,594,660,671,682,693,770,781,792,880,891,990

%N Numbers for which Sum_digits(odd positions) = Sum_digits(even positions).

%C Conjecture: this is a subsequence of A008593 (verified for the first 50 thousand terms). - _R. J. Mathar_, Feb 10 2008

%C Subsequence of A008593. - _Zak Seidov_ Feb 11 2008

%C If k is present, so is 10*k. - _Robert G. Wilson v_, Jul 13 2014

%C As Seidov said, a subsequence of multiples of 11. That follows trivially from the divisibility rule for 11. - _Jens Kruse Andersen_, Jul 13 2014

%C A225693(a(n)) = 0. - _Reinhard Zumkeller_, Aug 08 2014

%H Robert Israel, <a href="/A135499/b135499.txt">Table of n, a(n) for n = 1..10000</a> (first 119 terms from _Paolo P. Lava_ and _Giorgio Balzarotti_)

%e 594, 1023, and 1397 are terms:

%e 594 -> 4 + 5 = 9;

%e 1023 -> 3 + 0 = 2 + 1;

%e 1397 -> 7 + 3 = 9 + 1.

%p P:=proc(n) local i,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i; while k>0 do x:=x+(k-(trunc(k/10)*10)); k:=trunc(k/100); od; if w=2*x then print(i); fi; od; end: P(3000);

%p # Alternative:

%p filter:= proc(n)

%p local L,d;

%p L:= convert(n,base,10);

%p d:= nops(L);

%p add(L[2*i],i=1..floor(d/2)) = add(L[2*i-1],i=1..floor((d+1)/2))

%p end proc:

%p select(filter,[ 11*j $ j= 1 .. 10^4 ]); # _Robert Israel_, May 28 2014

%t dQ[n_]:=Module[{p=Transpose[Partition[IntegerDigits[n],2,2,1,0]]},Total[First[p]]== Total[Last[p]]]; Select[Range[1000],dQ] (* _Harvey P. Dale_, May 26 2011 *)

%o (Haskell)

%o a135499 n = a135499_list !! (n-1)

%o a135499_list = filter ((== 0) . a225693) [1..]

%o -- _Reinhard Zumkeller_, Aug 08 2014, Jul 05 2014

%Y Cf. A067042, A214527.

%Y Cf. A060979.

%Y Cf. A225693.

%K easy,nonn,base

%O 1,1

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Feb 08 2008