login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352537
Primes whose position in the Wythoff array is immediately followed by a prime both in the next column and the next row.
2
2, 3, 919, 1223, 1699, 3329, 8009, 11717, 13691, 19079, 20921, 21011, 22643, 22739, 24623, 26309, 28571, 28619, 28979, 30389, 33629, 34739, 35257, 41179, 42577, 48647, 54133, 58601, 59627, 61511, 65171, 70979, 75707, 80141, 84221, 86869, 90677, 93557, 94781
OFFSET
1,1
EXAMPLE
The Wythoff array begins:
1 2 3 5 ...
4 7 11 18 ...
6 10 16 26 ...
...
where one can see these 2 patterns:
2 3 and 3 5
7 11
so 2 and 3 are terms.
PROG
(PARI) T(n, k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
cell(n) = for (r=1, oo, for (c=1, oo, if (T(r, c) == n, return([r, c])); if (T(r, c) > n, break); ); );
isokp(m) = my(pos = cell(prime(m))); isprime (T(pos[1], pos[2]+1)) && isprime(T(pos[1]+1, pos[2]));
lista(nn) = for (n=1, nn, if (isokp(n), print1(prime(n), ", ")));
CROSSREFS
Cf. A003603, A035612, A035513 (Wythoff array).
Intersection of A352538 and A352539.
Sequence in context: A256115 A066685 A076155 * A136611 A004898 A062920
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 20 2022
STATUS
approved