Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 20 2022 06:44:26
%S 2,3,919,1223,1699,3329,8009,11717,13691,19079,20921,21011,22643,
%T 22739,24623,26309,28571,28619,28979,30389,33629,34739,35257,41179,
%U 42577,48647,54133,58601,59627,61511,65171,70979,75707,80141,84221,86869,90677,93557,94781
%N Primes whose position in the Wythoff array is immediately followed by a prime both in the next column and the next row.
%e The Wythoff array begins:
%e 1 2 3 5 ...
%e 4 7 11 18 ...
%e 6 10 16 26 ...
%e ...
%e where one can see these 2 patterns:
%e 2 3 and 3 5
%e 7 11
%e so 2 and 3 are terms.
%o (PARI) T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
%o cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break);););
%o isokp(m) = my(pos = cell(prime(m))); isprime (T(pos[1], pos[2]+1)) && isprime(T(pos[1]+1, pos[2]));
%o lista(nn) = for (n=1, nn, if (isokp(n), print1(prime(n), ", ")));
%Y Cf. A003603, A035612, A035513 (Wythoff array).
%Y Intersection of A352538 and A352539.
%K nonn
%O 1,1
%A _Michel Marcus_, Mar 20 2022