login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256115
Zeroless numbers n whose digit product squared is equal to the digit product of n^2.
3
1, 2, 3, 661, 983, 2631, 2893, 9254, 9628, 9642, 11892, 12385, 12893, 13836, 14642, 14661, 16472, 18615, 27519, 29474, 35383, 36213, 36914, 38691, 43386, 46215, 49231, 49342, 56176, 72576, 75384, 76256, 83631, 87291, 92843, 94482, 99146, 99482, 99842, 113865
OFFSET
1,2
LINKS
MATHEMATICA
fQ[n_] := Block[{d = Times @@ IntegerDigits@ n}, And[d != 0, d^2 == Times @@ IntegerDigits[n^2]]]; Select[Range@ 120000, fQ] (* Michael De Vlieger, Apr 22 2015 *)
PROG
(Python)
def product_digits(n):
results = 1
while n > 0:
remainder = n % 10
results *= remainder
n = (n-remainder)/10
return results
L = []
for a in range(1, 100000):
if product_digits(a*a) == (product_digits(a))*(product_digits(a)) and (product_digits(a) > 0):
L.append(a)
print(L)
(Sage)
[x for x in [1..50000] if (0 not in x.digits()) and prod(x.digits())^2==prod((x^2).digits())] # Tom Edgar, Apr 03 2015
(PARI) is(n)=vecmin(digits(n))&&A007954(n)^2==A007954(n^2) \\ M. F. Hasler, Apr 22 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Reiner Moewald, Mar 15 2015
STATUS
approved