login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A256114
Numbers n such that digit_product(n^2) = (digit_product(n))^2 and n mod 10 > 0.
2
1, 2, 3, 101, 102, 103, 104, 105, 201, 202, 203, 205, 301, 302, 303, 305, 401, 402, 403, 405, 501, 502, 503, 504, 505, 506, 507, 508, 509, 601, 602, 603, 605, 609, 661, 701, 702, 703, 705, 708, 709, 801, 802, 803, 805, 901, 902, 903, 905, 906, 983
OFFSET
1,2
COMMENTS
Contains i*10^d + j for i>=1, j mod 10 > 0, j < 10^d/(20*i+1). - Robert Israel, Jun 05 2015
LINKS
EXAMPLE
digit_product(661^2) = digit_product(436921) = 1296 = 36^2 = (digit_product(661))^2.
MAPLE
pdigs:= n -> convert(convert(n, base, 10), `*`):
select(t -> pdigs(t^2)=pdigs(t)^2, [seq(seq(10*k+j, j=1..9), k=0..1000)]); # Robert Israel, Jun 05 2015
MATHEMATICA
pod[n_] := Times@@ IntegerDigits@ n; Select[ Range[10^4], Mod[#, 10] > 0 && pod[#]^2 == pod[#^2] &] (* Giovanni Resta, Jun 23 2015 *)
PROG
(Python)
def product_digits(n):
...results = 1
...while n > 0:
......remainder = n % 10
......results *= remainder
......n = (n-remainder)/10
...return results
pos = 0
for a in range(1, 1000000):
...if product_digits(a*a) == (product_digits(a))*(product_digits(a)) and (a%10 > 0):
......pos += 1
......print(pos, a)
(Magma) [t: j in [1..9], k in [0..100] | &*Intseq(t^2) eq &*Intseq(t)^2 where t is 10*k+j]; // Bruno Berselli, Jun 23 2015
CROSSREFS
Sequence in context: A371120 A371270 A249409 * A345336 A062657 A041589
KEYWORD
nonn,base
AUTHOR
Reiner Moewald, Mar 15 2015
STATUS
approved