login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249409
E.g.f.: Sum_{n>=0} x^n * (exp(n*x) - 1)^n.
2
1, 0, 2, 3, 100, 965, 26166, 652687, 22791336, 942744105, 46394042410, 2686920755651, 179344249073628, 13675378594960381, 1179389058183817950, 114010570608973463895, 12267159489256485080656, 1459502985288809274179153, 190910980556047614953376594, 27316077853047666256173322603
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{n>=0} x^n * exp(n^2*x) / (1 + x*exp(n*x))^(n+1).
E.g.f.: Sum_{n>=0} x^n * exp(-n*x) / (x + exp(-n*x))^(n+1).
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 3*x^3/3! + 100*x^4/4! + 965*x^5/5! +...
where the e.g.f. satisfies following series identity:
A(x) = 1 + x*(exp(x)-1) + x^2*(exp(2*x)-1)^2 + x^3*(exp(3*x)-1)^3 + x^4*(exp(4*x)-1)^4 + x^5*(exp(5*x)-1)^5 + x^6*(exp(6*x)-1)^6 +...
A(x) = 1/(1+x) + x*exp(x)/(1+x*exp(x))^2 + x^2*exp(4*x)/(1+x*exp(2*x))^3 + x^3*exp(9*x)/(1+x*exp(3*x))^4 + x^4*exp(16*x)/(1+x*exp(4*x))^5 + x^5*exp(25*x)/(1+x*exp(5*x))^6 + x^6*exp(36*x)/(1+x*exp(6*x))^7 +...
A(x) = 1/(x+1) + x*exp(-x)/(x+exp(-x))^2 + x^2*exp(-2*x)/(x+exp(-2*x))^3 + x^3*exp(-3*x)/(x+exp(-3*x))^4 + x^4*exp(-4*x)/(x+exp(-4*x))^5 + x^5*exp(-5*x)/(x+exp(-5*x))^6 + x^6*exp(-6*x)/(x+exp(-6*x))^7 +...
PROG
(PARI) {a(n)=local(A=1); A=sum(k=0, n, x^k * (exp(k*x +x*O(x^n)) - 1)^k); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=sum(k=0, n, x^k * exp(k^2*x +x*O(x^n)) / (1 + x*exp(k*x +x*O(x^n)))^(k+1) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=sum(k=0, n, x^k * exp(-k*x +x*O(x^n)) / (x + exp(-k*x +x*O(x^n)))^(k+1) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2014
STATUS
approved