login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249410
Primes p such that sigma(p-1) is odd.
2
2, 3, 5, 17, 19, 37, 73, 101, 163, 197, 257, 401, 577, 677, 883, 1153, 1297, 1459, 1601, 1801, 2179, 2593, 2917, 3137, 3529, 4051, 4357, 5477, 7057, 8101, 8713, 8837, 10369, 11251, 12101, 13457, 14401, 15139, 15377, 15877, 16901, 17299, 17957, 18433, 19603
OFFSET
1,1
COMMENTS
Subsequence of A058501.
Union of A002496 and A090698. - Ivan Neretin, Dec 04 2018
Except for the terms 2 and 3, union of the primes of the form 4*k^2 + 1 and the primes of the form 18*k^2 + 1. - Jianing Song, Nov 14 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
2 is in this sequence because 2 is prime and sigma(2-1) = 1 is odd.
MATHEMATICA
Select[Range[20000], PrimeQ[#] && OddQ[DivisorSigma[1, #-1]] &] (* Amiram Eldar, Dec 04 2018 *)
PROG
(PARI) lista(nn) = {forprime(p=2, nn, if (sigma(p-1) % 2, print1(p, ", ")); ); } \\ Michel Marcus, Oct 30 2014
(PARI) list(lim)=my(v=List([2]), t); forstep(n=2, sqrt(lim), 2, if(isprime(t=n^2+1), listput(v, t))); for(n=1, sqrtint(lim\2), if(isprime(t=2*n^2+1), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Nov 04 2014
(GAP) Filtered(Filtered([1..25000], i->IsPrime(i)), p->IsOddInt(Sigma(p-1))); # Muniru A Asiru, Dec 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Oct 30 2014
STATUS
approved