login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that sigma(p-1) is odd.
2

%I #24 Nov 14 2021 23:53:19

%S 2,3,5,17,19,37,73,101,163,197,257,401,577,677,883,1153,1297,1459,

%T 1601,1801,2179,2593,2917,3137,3529,4051,4357,5477,7057,8101,8713,

%U 8837,10369,11251,12101,13457,14401,15139,15377,15877,16901,17299,17957,18433,19603

%N Primes p such that sigma(p-1) is odd.

%C Subsequence of A058501.

%C Union of A002496 and A090698. - _Ivan Neretin_, Dec 04 2018

%C Except for the terms 2 and 3, union of the primes of the form 4*k^2 + 1 and the primes of the form 18*k^2 + 1. - _Jianing Song_, Nov 14 2021

%H Charles R Greathouse IV, <a href="/A249410/b249410.txt">Table of n, a(n) for n = 1..10000</a>

%e 2 is in this sequence because 2 is prime and sigma(2-1) = 1 is odd.

%t Select[Range[20000], PrimeQ[#] && OddQ[DivisorSigma[1, #-1]] &] (* _Amiram Eldar_, Dec 04 2018 *)

%o (PARI) lista(nn) = {forprime(p=2, nn, if (sigma(p-1) % 2, print1(p, ", ")););} \\ _Michel Marcus_, Oct 30 2014

%o (PARI) list(lim)=my(v=List([2]),t); forstep(n=2,sqrt(lim),2, if(isprime(t=n^2+1), listput(v,t))); for(n=1,sqrtint(lim\2), if(isprime(t=2*n^2+1), listput(v,t))); Set(v) \\ _Charles R Greathouse IV_, Nov 04 2014

%o (GAP) Filtered(Filtered([1..25000],i->IsPrime(i)),p->IsOddInt(Sigma(p-1))); # _Muniru A Asiru_, Dec 05 2018

%Y Cf. A000203, A058501, A090698.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Oct 27 2014

%E More terms from _Michel Marcus_, Oct 30 2014