login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248653
E.g.f.: Sum_{n>=0} x^n * (2 + exp(n*x))^n.
4
1, 3, 20, 237, 4276, 107225, 3518526, 145005721, 7285611096, 436297841649, 30590014543930, 2474931380486081, 228308751882636756, 23772216923031342649, 2769853988736186166374, 358463639909150646730665, 51192480930691715108562736, 8021370202848006225125239649
OFFSET
0,2
FORMULA
E.g.f.: Sum_{n>=0} x^n * exp(n^2*x) / (1 - 2*x*exp(n*x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 20*x^2/2! + 237*x^3/3! + 4276*x^4/4! + 107225*x^5/5! +...
where the g.f. satisfies following series identity:
A(x) = 1 + x*(2+exp(x)) + x^2*(2+exp(2*x))^2 + x^3*(2+exp(3*x))^3 + x^4*(2+exp(4*x))^4 + x^5*(2+exp(5*x))^5 + x^6*(2+exp(6*x))^6 +...
A(x) = 1/(1-2*x) + x*exp(x)/(1-2*x*exp(x))^2 + x^2*exp(4*x)/(1-2*x*exp(2*x))^3 + x^3*exp(9*x)/(1-2*x*exp(3*x))^4 + x^4*exp(16*x)/(1-2*x*exp(4*x))^5 + x^5*exp(25*x)/(1-2*x*exp(5*x))^6 + x^6*exp(36*x)/(1-2*x*exp(6*x))^7 +...
PROG
(PARI) {a(n, t=2)=local(A=1); A=sum(k=0, n, x^k * (t + exp(k*x +x*O(x^n)))^k); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n, 2), ", "))
(PARI) {a(n, t=2)=local(A=1); A=sum(k=0, n, x^k * exp(k^2*x +x*O(x^n))/(1 - t*x*exp(k*x +x*O(x^n)))^(k+1) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n, 2), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 18 2014
STATUS
approved