login
A076155
Omega(n) = Omega(n-1)^3, where Omega(m) (A001222) denotes the number of prime factors of m, counting multiplicity.
0
2, 3, 896, 960, 1344, 1944, 2160, 2496, 3240, 3264, 3600, 3648, 3712, 3744, 4416, 4536, 4736, 4860, 4928, 5568, 5600, 5616, 5952, 6000, 6240, 6624, 7290, 7344, 7392, 7616, 7808, 7872, 8160, 8208, 8352, 8400, 8512, 8736, 8928, 9024, 9120, 9936
OFFSET
1,1
EXAMPLE
Omega(896) = 2^3 = Omega(895)^2, so 896 is a term of the sequence.
MATHEMATICA
Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; l = {2}; Do[ If[Omega[i] == (Omega[i - 1])^3, l = Append[l, i]], {i, 3, 10^4}]; l
Join[{2}, Flatten[Position[Partition[PrimeOmega[Range[10000]], 2, 1], _?(#[[1]]^3==#[[2]]&), 1, Heads->False]]+1] (* Harvey P. Dale, Sep 22 2017 *)
CROSSREFS
Sequence in context: A108332 A256115 A066685 * A352537 A136611 A004898
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Oct 31 2002
STATUS
approved