login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076155
Omega(n) = Omega(n-1)^3, where Omega(m) (A001222) denotes the number of prime factors of m, counting multiplicity.
0
2, 3, 896, 960, 1344, 1944, 2160, 2496, 3240, 3264, 3600, 3648, 3712, 3744, 4416, 4536, 4736, 4860, 4928, 5568, 5600, 5616, 5952, 6000, 6240, 6624, 7290, 7344, 7392, 7616, 7808, 7872, 8160, 8208, 8352, 8400, 8512, 8736, 8928, 9024, 9120, 9936
OFFSET
1,1
EXAMPLE
Omega(896) = 2^3 = Omega(895)^2, so 896 is a term of the sequence.
MATHEMATICA
Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; l = {2}; Do[ If[Omega[i] == (Omega[i - 1])^3, l = Append[l, i]], {i, 3, 10^4}]; l
Join[{2}, Flatten[Position[Partition[PrimeOmega[Range[10000]], 2, 1], _?(#[[1]]^3==#[[2]]&), 1, Heads->False]]+1] (* Harvey P. Dale, Sep 22 2017 *)
CROSSREFS
Sequence in context: A108332 A256115 A066685 * A352537 A136611 A004898
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Oct 31 2002
STATUS
approved