login
A076158
a(n) = the least positive integer k such that Omega(n+k) = Omega(k)+n, where Omega(m) (A001222) denotes the number of prime factors of m, counting multiplicity.
0
1, 14, 13, 124, 59, 506, 505, 9208, 2551, 6134, 6133, 81908, 32755, 147442, 65521, 2097136, 262127, 3669998, 4194285, 28311532, 18874347, 56623082, 37748713, 939524072, 134217703, 2147483622, 536870885, 9663676388, 4294967267
OFFSET
1,2
EXAMPLE
Omega(14 + 2) = 4 = Omega(14) + 2 and 14 is the least k such that Omega(k+2) = Omega(k)+2. Therefore a(2) = 14.
MATHEMATICA
Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; m = {1}; For[k = 2, k <= 12, k++, l = {}; Do[ If[Omega[i + k] == Omega[i] + k, l = Append[l, i]], {i, 2, 10^5}]; m = Append[m, Min[l]]]; m
CROSSREFS
Sequence in context: A055125 A373160 A206564 * A174160 A199256 A199201
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Nov 01 2002
EXTENSIONS
Definition corrected and a(13)-a(29) from Donovan Johnson, Mar 21 2011
STATUS
approved