login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174160
A symmetrical triangular sequence:t(n,m)=2*Eulerian[n, m - 1] - (Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m)^2
0
1, 1, 1, 1, -1, 1, 1, -14, -14, 1, 1, -48, -268, -48, 1, 1, -111, -1896, -1896, -111, 1, 1, -201, -8643, -25793, -8643, -201, 1, 1, -290, -29830, -208862, -208862, -29830, -290, 1, 1, -292, -83680, -1206508, -2799316, -1206508, -83680, -292, 1, 1, 1
OFFSET
1,8
COMMENTS
Row sums are:
{1, 2, 1, -26, -362, -4012, -43479, -477962, -5380274, -62040980,...}.
FORMULA
t(n,m)=2*Eulerian[n, m - 1] - (Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m)^2
EXAMPLE
{1},
{1, 1},
{1, -1, 1},
{1, -14, -14, 1},
{1, -48, -268, -48, 1},
{1, -111, -1896, -1896, -111, 1},
{1, -201, -8643, -25793, -8643, -201, 1},
{1, -290, -29830, -208862, -208862, -29830, -290, 1},
{1, -292, -83680, -1206508, -2799316, -1206508, -83680, -292, 1},
{1, 1, -195920, -5440016, -25384556, -25384556, -5440016, -195920, 1, 1}
MATHEMATICA
<< DiscreteMath`Combinatorica`
t[n_, m_] =2*Eulerian[n, m - 1] - (Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m)^2;
Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 10 2010
STATUS
approved