|
|
A256118
|
|
Nine-digit zeroless pandigital numbers that are concatenation of three 3-digit prime numbers in increasing order.
|
|
1
|
|
|
127463859, 127643859, 149257683, 149257863, 149263587, 149263857, 149563827, 149653827, 157463829, 157643829, 163457829, 163547829, 239461587, 239461857, 239587641, 239641857, 241367859, 241673859, 241769853, 241853967, 251389467
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The sequence is finite with last term a(136) = 659743821.
|
|
LINKS
|
Zak Seidov, Table of n, a(n) for n = 1..136
|
|
EXAMPLE
|
(127, 463, 859) is the least triple of 3-digit primes together using each of nine digits 1..9 exactly once. Hence a(1) = 127463859.
|
|
MATHEMATICA
|
fQ[n_] := Block[{d = DigitCount@ n}, And[Max@ d == 1, Last@ d == 0, Plus @@ d == 9, n == FromDigits@ Flatten[IntegerDigits /@ Select[FromDigits /@ Partition[IntegerDigits@ n, 3], PrimeQ]]]]; Select[FromDigits /@ DeleteDuplicates[Flatten /@ (Sort@ Partition[IntegerDigits@ #, 3] & /@ FromDigits /@ Permutations[Range@ 9])], fQ@ # &] (* Michael De Vlieger, Mar 15 2015 *)
pnioQ[n_]:=Module[{idn=Partition[n, 3], a, b, c}, {a, b, c}=FromDigits/@ idn; a<b<c && AllTrue[{a, b, c}, PrimeQ]]; FromDigits/@ Select[ Permutations[ Range[ 9]], pnioQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 18 2016 *)
|
|
CROSSREFS
|
Cf. A050278, A115301 (3 primes unsorted).
Sequence in context: A344832 A334346 A115301 * A036341 A184648 A258262
Adjacent sequences: A256115 A256116 A256117 * A256119 A256120 A256121
|
|
KEYWORD
|
nonn,base,fini,full
|
|
AUTHOR
|
Zak Seidov, Mar 15 2015
|
|
STATUS
|
approved
|
|
|
|