login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257587
If n = abcd... in decimal, a(n) = a^2 - b^2 + c^2 - d^2 + ...
3
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 0, -3, -8, -15, -24, -35, -48, -63, -80, 4, 3, 0, -5, -12, -21, -32, -45, -60, -77, 9, 8, 5, 0, -7, -16, -27, -40, -55, -72, 16, 15, 12, 7, 0, -9, -20, -33, -48, -65, 25, 24, 21, 16, 9, 0, -11, -24, -39, -56, 36, 35, 32
OFFSET
0,3
LINKS
FORMULA
a(A352535(n)) = 0. - Bernard Schott, Jul 12 2022
MATHEMATICA
A257587[n_] := Total[-(-1)^Range[Max[IntegerLength[n], 1]]*IntegerDigits[n]^2];
Array[A257587, 100, 0] (* Paolo Xausa, Mar 11 2024 *)
PROG
(Python)
def a(n): return sum(int(d)**2*(-1)**i for i, d in enumerate(str(n)))
print([a(n) for n in range(63)]) # Michael S. Branicky, Jul 11 2022
(PARI) a(n) = my(d=digits(n)); sum(k=1, #d, (-1)^(k+1)*d[k]^2); \\ Michel Marcus, Jul 12 2022
CROSSREFS
First 100 terms coincide with those of A177894, but then they diverge.
Cf. A257588, A257796, A352535 (indices of zeros).
Sequence in context: A063462 A098736 A002015 * A257588 A352598 A303269
KEYWORD
sign,base
AUTHOR
N. J. A. Sloane, May 10 2015
STATUS
approved