login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177894
Determinant of the square matrix whose rows are the cyclic permutations of the digits of n.
9
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, -3, -8, -15, -24, -35, -48, -63, -80, 4, 3, 0, -5, -12, -21, -32, -45, -60, -77, 9, 8, 5, 0, -7, -16, -27, -40, -55, -72, 16, 15, 12, 7, 0, -9, -20, -33, -48, -65, 25, 24, 21, 16, 9, 0, -11, -24, -39, -56, 36, 35, 32, 27, 20, 11, 0, -13, -28, -45, 49, 48, 45, 40, 33, 24, 13, 0, -15, -32, 64, 63, 60, 55, 48, 39, 28, 15, 0, -17, 81, 80, 77, 72, 65, 56, 45, 32
OFFSET
0,3
LINKS
FORMULA
For n = a, det(M) = a;
for n = ab, det(M) = a^2 - b^2;
for n = abc, det(M) = 3abc - a^3 - b^3 - c^3; ...
EXAMPLE
for n=104, the (3 X 3) matrix M is
[1 0 4]
[0 4 1]
[4 1 0]
and a(104) = det(M) = -65.
MATHEMATICA
A177894[n_] := If[n < 10, n, Det[NestList[RotateLeft, IntegerDigits[n], IntegerLength[n]-1]]]; Array[A177894, 100, 0] (* Paolo Xausa, Mar 11 2024 *)
PROG
(Sage)
def A177894(n):
d = n.digits()[::-1] if n > 0 else [0]
M = Matrix(lambda i, j: d[(i+j) % len(d)], nrows=len(d))
return M.determinant() # D. S. McNeil, Dec 16 2010
(PARI) a(n) = {if(n<10, return(n)); my(d = digits(n), m, s); d = concat(d, d); s = #d/2; m = matrix(s, s, i, j, d[i+j-1]); matdet(m)} \\ David A. Corneth, Jun 12 2017
CROSSREFS
Coincides with A257587 for the first 100 terms, but differs thereafter.
Sequence in context: A330350 A222210 A346511 * A376771 A287877 A175398
KEYWORD
sign,base,easy,look
AUTHOR
Michel Lagneau, Dec 15 2010
STATUS
approved