Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 11 2024 04:13:00
%S 0,1,2,3,4,5,6,7,8,9,1,0,-3,-8,-15,-24,-35,-48,-63,-80,4,3,0,-5,-12,
%T -21,-32,-45,-60,-77,9,8,5,0,-7,-16,-27,-40,-55,-72,16,15,12,7,0,-9,
%U -20,-33,-48,-65,25,24,21,16,9,0,-11,-24,-39,-56,36,35,32,27,20,11,0,-13,-28,-45,49,48,45,40,33,24,13,0,-15,-32,64,63,60,55,48,39,28,15,0,-17,81,80,77,72,65,56,45,32
%N Determinant of the square matrix whose rows are the cyclic permutations of the digits of n.
%H David A. Corneth, <a href="/A177894/b177894.txt">Table of n, a(n) for n = 0..9999</a>
%F For n = a, det(M) = a;
%F for n = ab, det(M) = a^2 - b^2;
%F for n = abc, det(M) = 3abc - a^3 - b^3 - c^3; ...
%e for n=104, the (3 X 3) matrix M is
%e [1 0 4]
%e [0 4 1]
%e [4 1 0]
%e and a(104) = det(M) = -65.
%t A177894[n_] := If[n < 10, n, Det[NestList[RotateLeft, IntegerDigits[n], IntegerLength[n]-1]]]; Array[A177894, 100, 0] (* _Paolo Xausa_, Mar 11 2024 *)
%o (Sage)
%o def A177894(n):
%o d = n.digits()[::-1] if n > 0 else [0]
%o M = Matrix(lambda i,j: d[(i+j) % len(d)], nrows=len(d))
%o return M.determinant() # _D. S. McNeil_, Dec 16 2010
%o (PARI) a(n) = {if(n<10, return(n)); my(d = digits(n), m, s); d = concat(d, d); s = #d/2; m = matrix(s, s, i, j, d[i+j-1]); matdet(m)} \\ _David A. Corneth_, Jun 12 2017
%Y Coincides with A257587 for the first 100 terms, but differs thereafter.
%K sign,base,easy,look
%O 0,3
%A _Michel Lagneau_, Dec 15 2010