login
A218491
Number of ways that prime(n) can be represented as the sum of four nonzero squares.
1
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 2, 2, 0, 2, 2, 1, 1, 2, 3, 2, 3, 3, 2, 1, 4, 1, 5, 2, 3, 2, 5, 2, 3, 4, 2, 5, 6, 6, 5, 3, 3, 5, 5, 6, 4, 7, 5, 9, 5, 7, 4, 6, 6, 5, 5, 7, 4, 9, 8, 4, 9, 6, 10, 8, 10, 7, 9, 9, 7, 9, 8, 9, 13, 10, 10, 11, 7, 13, 7, 10, 8, 11, 10, 13
OFFSET
1,11
COMMENTS
a(pi(A213721(n))) = n, where pi(n) is the prime counting function.
EXAMPLE
a(11) = 2 because prime(11) = 31 = 2*1 + 4 + 25 = 4 + 3*9.
MATHEMATICA
Table[Count[PowersRepresentations[Prime[n], 4, 2], _?(Min[#] > 0 &)], {n, 84}]
CROSSREFS
Sequence in context: A307757 A215283 A066518 * A111165 A349812 A029321
KEYWORD
nonn
AUTHOR
STATUS
approved