login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - x/(1 - 3*x/(1 - 4*x/(1 - 7*x/(1 - 11*x/(1 - 18*x/(1 - ... - Lucas(k)*x/(1 - ...)))))))), a continued fraction.
2

%I #13 Nov 12 2023 12:55:15

%S 1,1,4,28,292,4408,97432,3231256,164789104,13170099856,1670220282544,

%T 338692348412320,110327835695333920,57892877044109184160,

%U 49019180876700301391680,67044425508546158335526080,148216012413625321252632612160,529829556146109541834263919553920

%N Expansion of 1/(1 - x/(1 - 3*x/(1 - 4*x/(1 - 7*x/(1 - 11*x/(1 - 18*x/(1 - ... - Lucas(k)*x/(1 - ...)))))))), a continued fraction.

%H Alois P. Heinz, <a href="/A307083/b307083.txt">Table of n, a(n) for n = 0..97</a>

%F a(n) ~ c * phi^(n*(n+1)/2), where phi = A001622 is the golden ratio and c = 5.62026823201787715079864730026619553810473701484813959397175006212578036... - _Vaclav Kotesovec_, Sep 18 2021

%p L:= proc(n) option remember; (<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1] end:

%p b:= proc(x, y) option remember; `if`(x=0 and y=0, 1,

%p `if`(x>0, b(x-1, y)*L(y-x+1), 0)+`if`(y>x, b(x, y-1), 0))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..17); # _Alois P. Heinz_, Nov 12 2023

%t nmax = 17; CoefficientList[Series[1/(1 + ContinuedFractionK[-LucasL[k] x, 1, {k, 1, nmax}]), {x, 0, nmax}], x]

%Y Cf. A000204, A001622, A206742, A307082.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Mar 23 2019