Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 04 2024 13:30:26
%S 1,5,30,200,1425,10625,81875,646875,5211875,42659375,353725000,
%T 2965031250,25083859375,213894609375,1836516718750,15863968750000,
%U 137767560546875,1202116083984375,10534061644531250,92664360625000000,817975366904296875,7243402948779296875
%N Expansion of (1-5*x-sqrt((1-5*x)^2-4*5*x^2))/(2*5*x^2).
%C Series reversion of x/(1+5x+5x^2). Transform of 5^n under the matrix A107131. A row of A107267.
%C Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 5 colors and D(1,-1) one color. - _Paul Barry_, May 16 2005
%H Vincenzo Librandi, <a href="/A107265/b107265.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: (1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2).
%F a(n) = Sum_{k=0..n} (1/(k+1)) * C(k+1,n-k+1) * C(n, k) * 5^k.
%F E.g.f.: a(n) = n!* [x^n] exp(5*x)*BesselI(1,2*sqrt(5)*x) /(sqrt(5)*x). -_Peter Luschny_, Aug 25 2012
%F D-finite with recurrence: (n+2)*a(n) = 5*(2*n+1)*a(n-1) - 5*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 17 2012
%F a(n) ~ sqrt(38+17*sqrt(5))*(5+2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 17 2012
%F G.f.: 1/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - ...))))), a continued fraction. - _Ilya Gutkovskiy_, Sep 21 2017
%t CoefficientList[Series[(1-5*x-Sqrt[1-10*x+5*x^2])/(10*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 17 2012 *)
%o (PARI) x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2)) \\ _Joerg Arndt_, May 15 2013
%K easy,nonn
%O 0,2
%A _Paul Barry_, May 15 2005