login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322257
The number of practical numbers not exceeding 10^n.
3
1, 5, 30, 198, 1456, 11751, 97385, 829157, 7266286, 64782731, 582798892
OFFSET
0,2
LINKS
Maurice Margenstern, Les nombres pratiques: théorie, observations et conjectures, Journal of Number Theory 37 (1): 1-36, 1991.
Andreas Weingartner, Practical numbers and the distribution of divisors, Q. J. Math. 66 (2015), 743 - 758.
Andreas Weingartner, On the constant factor in several related asymptotic estimates, arXiv preprint arXiv:1705.06349 [math.NT], 2017-2018.
Andreas Weingartner, The constant factor in the asymptotic for practical numbers, arXiv:1906.07819 [math.NT], 2019.
FORMULA
a(n) ~ c * f(10^n), where f(x) = x/log(x) and c is a constant (evaluated as 1.341 by Margenstern; Weingartner proved that 1.311 < c < 1.693).
1.33606 < c < 1.33609. See Weingartner (2019). - Michel Marcus, Jun 19 2019
MATHEMATICA
practicalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; n=0; s={}; Do[If[k>10^n, AppendTo[s, c]; n++]; If[practicalQ [k], c++], {k, 1, 100000}]; s (* after T. D. Noe at A005153 *)
PROG
(PARI) my(x=1, i=0); for(k=1, oo, if(is_A005153(k), i++); if(k >= x, print1(i, ", "); x=x*10)) \\ Felix Fröhlich, Dec 08 2018. [Stale copy of is_A005153 removed here. Please do not duplicate code, it will necessarily become obsolete or worse. - M. F. Hasler, Jun 19 2023]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Dec 01 2018
STATUS
approved