OFFSET
0,1
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..2000
Don Redmond, Infinite products and Fibonacci numbers, Fib. Quart., Vol. 32, No. 3 (1994), pp. 234-239.
FORMULA
Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(mu(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and mu(k) is the Moebius function.
Equals exp(-A226765).
EXAMPLE
0.40259263632247824757446721584399016437464148244440...
MAPLE
evalf[100](exp(-9+5*(1+sqrt(5))/2)); # Muniru A Asiru, Dec 06 2018
MATHEMATICA
RealDigits[Exp[-9+5*GoldenRatio], 10, 120][[1]]
PROG
(PARI) exp(-(13-5*sqrt(5))/2) \\ Michel Marcus, Dec 02 2018
(Magma) SetDefaultRealField(RealField(100)); Exp(-(13-5*Sqrt(5))/2); // G. C. Greubel, Dec 16 2018
(Sage) numerical_approx(exp(-(9-5*golden_ratio)), digits=100) # G. C. Greubel, Dec 16 2018
CROSSREFS
KEYWORD
AUTHOR
Amiram Eldar, Dec 01 2018
STATUS
approved