login
A322259
Decimal expansion of exp(-9 + 5*phi), where phi is the golden ratio.
2
4, 0, 2, 5, 9, 2, 6, 3, 6, 3, 2, 2, 4, 7, 8, 2, 4, 7, 5, 7, 4, 4, 6, 7, 2, 1, 5, 8, 4, 3, 9, 9, 0, 1, 6, 4, 3, 7, 4, 6, 4, 1, 4, 8, 2, 4, 4, 4, 4, 0, 9, 3, 7, 3, 9, 5, 1, 6, 8, 4, 2, 3, 1, 9, 1, 4, 1, 8, 5, 3, 0, 3, 1, 2, 6, 8, 8, 5, 3, 3, 7, 1, 4, 6, 7, 6, 5
OFFSET
0,1
LINKS
Don Redmond, Infinite products and Fibonacci numbers, Fib. Quart., Vol. 32, No. 3 (1994), pp. 234-239.
FORMULA
Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(mu(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and mu(k) is the Moebius function.
Equals exp(-A226765).
EXAMPLE
0.40259263632247824757446721584399016437464148244440...
MAPLE
evalf[100](exp(-9+5*(1+sqrt(5))/2)); # Muniru A Asiru, Dec 06 2018
MATHEMATICA
RealDigits[Exp[-9+5*GoldenRatio], 10, 120][[1]]
PROG
(PARI) exp(-(13-5*sqrt(5))/2) \\ Michel Marcus, Dec 02 2018
(Magma) SetDefaultRealField(RealField(100)); Exp(-(13-5*Sqrt(5))/2); // G. C. Greubel, Dec 16 2018
(Sage) numerical_approx(exp(-(9-5*golden_ratio)), digits=100) # G. C. Greubel, Dec 16 2018
CROSSREFS
KEYWORD
nonn,cons,changed
AUTHOR
Amiram Eldar, Dec 01 2018
STATUS
approved