login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240943
Decimal expansion of the radius of convergence of Wedderburn-Etherington numbers g.f.
2
4, 0, 2, 6, 9, 7, 5, 0, 3, 6, 7, 1, 4, 4, 1, 2, 9, 0, 9, 6, 9, 0, 4, 5, 3, 4, 8, 6, 5, 1, 0, 8, 3, 8, 0, 3, 4, 1, 7, 5, 5, 6, 7, 2, 1, 6, 2, 4, 9, 7, 2, 6, 5, 9, 2, 9, 1, 0, 5, 3, 4, 6, 4, 6, 0, 7, 6, 4, 2, 7, 2, 8, 9, 6, 6, 5, 2, 4, 2, 5, 8, 4, 1, 6, 4, 1, 6, 0, 9, 6, 0, 2, 6, 2, 1, 7, 2, 0, 5, 9, 5, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 297.
LINKS
Nils Berglund, Yvain Bruned, BPHZ renormalisation and vanishing subcriticality limit of the fractional Phi_d^3 model, arXiv:1907.13028 [math.PR], 2019.
Nils Berglund, Christian Kuehn, Model Spaces of Regularity Structures for Space-Fractional SPDEs, Journal of Statistical Physics, Springer Verlag, 2017, 168 (2), pp.331-368; HAL Id : hal-01432157.
Nicolas Broutin and Philippe Flajolet, The height of random binary unlabelled trees, arXiv:0807.2365 [math.CO], 2008.
Eric Weisstein's World of Mathematics, Weakly binary tree
FORMULA
EXAMPLE
0.4026975036714412909690453486510838034175567216249726592910534646...
MATHEMATICA
digits = 102; n0 = 50; dn = 50; Clear[rho]; rho[n_] := rho[n] = (Clear[c]; c[0] = 0; y[z_] = Sum[c[k]*z^k, {k, 0, n}]; eq[0] = Rest[ Thread[CoefficientList[(-2*z + 2*y[z] - y[z]^2 - y[z^2])/2, z] == 0]]; s[1] = First[Solve[First[eq[0]], c[1]]]; Do[eq[k-1] = Rest[eq[k-2]] /. s[k-1]; s[k] = First[Solve[First[eq[k-1]], c[k]]], {k, 2, n}]; z /. FindRoot[ 2*z + y[z^2] == 1 /. Flatten[Table[s[k], {k, 1, n}]], {z, 1/2}, WorkingPrecision -> digits+10]); rho[n0]; rho[n = n0 + dn]; While[RealDigits[rho[n], 10, digits] != RealDigits[rho[n - dn], 10, digits], Print["n = ", n]; n = n + dn]; RealDigits[rho[n], 10, digits] // First
(* or, after A086317: *) Clear[c, xi]; c[0] = 2; c[n_] := c[n] = c[n-1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n-5], 10, digits], n = n+5]; RealDigits[1/xi[n], 10, digits] // First (* Jean-François Alcover, Aug 04 2014 *)
CROSSREFS
Sequence in context: A322259 A057607 A377644 * A271823 A011352 A275983
KEYWORD
nonn,cons
AUTHOR
STATUS
approved