login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240944
Number of compositions of n into square parts k^2 where there are k sorts of part k^2.
4
1, 1, 1, 1, 3, 5, 7, 9, 15, 28, 45, 66, 99, 164, 269, 422, 651, 1028, 1654, 2637, 4149, 6522, 10350, 16467, 26091, 41205, 65174, 103339, 163833, 259361, 410376, 649827, 1029543, 1630725, 2581848, 4087797, 6473832, 10253370, 16237375, 25711316, 40714953, 64478427, 102111230, 161701086, 256062990, 405499697, 642156651
OFFSET
0,5
LINKS
FORMULA
G.f.: 1/(1 - sum(k>=1, k * x^(k^2)) ).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, `if`(n<0, 0,
add(k*a(n-k^2), k=1..isqrt(n))))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2014
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, If[n<0, 0, Sum[k*a[n-k^2], {k, Sqrt[n]}]]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/(1 - sum(k=1, 1+sqrtint(N), k * x^(k^2))) )
CROSSREFS
Cf. A006456 (compositions into squares).
Sequence in context: A327823 A102633 A052942 * A117913 A064411 A146556
KEYWORD
nonn
AUTHOR
Joerg Arndt, Aug 04 2014
STATUS
approved