OFFSET
1,2
COMMENTS
Solomon W. Golomb and Kee-Wai Lau prove in AMM (see link) that the greatest odd integer with this property is 105.
This sequence is inspirated by the other one: integers q such that every integer k with 1 < k < q and gcd(k,q) = 1 is prime, with 2, 3, 4, 6, 8, 12, 18, 24, 30 in A048597 \ {1}.
The terms 1 and 3 are added after recommendations of Amiram Eldar and Michel Marcus.
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, number 105, page 118.
LINKS
Solomon W. Golomb and Kee-Wai Lau, Problem E3137, American Mathematical Monthly, Vol. 94, No. 9, Nov. 1987, pp. 883-884.
EXAMPLE
For m = 15 and 1 < k odd < 15, we have gcd(3,15) = 3, gcd(5,15) = 5, gcd(7,15) = 1, gcd(9,15) = 3, gcd(11,15) = 1, gcd(13,15) = 1. So, gcd(k,15) = 1 only if k is prime and 15 is a term.
For m = 63, we have gcd(25,63) = 1 with 25 no prime, so 63 is not a term.
MATHEMATICA
aQ[n_] := OddQ[n] && AllTrue[Select[Range[3, n, 2], CoprimeQ[n, #] &], PrimeQ]; Select[Range[10^3], aQ] (* Amiram Eldar, Sep 27 2019 *)
PROG
(PARI) isok(m) = {if (m % 2, forstep (k=3, m-1, 2, if ((gcd(k, m) == 1) && !isprime(k), return(0)); ); return(1); ); } \\ Michel Marcus, Sep 27 2019
CROSSREFS
KEYWORD
nonn,full,fini
AUTHOR
Bernard Schott, Sep 26 2019
STATUS
approved