login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327826
Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size two.
3
0, 0, 0, 3, 16, 125, 711, 5915, 46264, 438681, 4371085, 49321745, 588219523, 7751724513, 108240044745, 1633289839823, 26102966544024, 445098171557393, 8006283582196761, 152353662601600853, 3046062181913575921, 64015245150903376151, 1408108698825029286195
OFFSET
0,4
FORMULA
a(n) ~ c * n!, where c = Sum_{k>=2} 1/(k! - 1) = A331373 = 1.253498755699953471643360937905798940369232208332... - Vaclav Kotesovec, Sep 28 2019, updated Jul 19 2021
MAPLE
with(combinat):
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
multinomial(n, n-i*j, i$j), j=0..n/i))), x, 3)
end:
a:= n-> coeff(b(n$2), x, 2):
seq(a(n), n=0..25);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[x^Sign[j] b[n - i*j, i - 1] multinomial[n, Join[{n - i*j}, Table[i, {j}]]], {j, 0, n/i}]]], {x, 0, 3}];
a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A327803.
Sequence in context: A090135 A351423 A188417 * A157457 A365626 A000950
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 26 2019
STATUS
approved