login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size two.
3

%I #15 Mar 18 2024 06:01:40

%S 0,0,0,3,16,125,711,5915,46264,438681,4371085,49321745,588219523,

%T 7751724513,108240044745,1633289839823,26102966544024,445098171557393,

%U 8006283582196761,152353662601600853,3046062181913575921,64015245150903376151,1408108698825029286195

%N Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size two.

%H Alois P. Heinz, <a href="/A327826/b327826.txt">Table of n, a(n) for n = 0..450</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%F a(n) ~ c * n!, where c = Sum_{k>=2} 1/(k! - 1) = A331373 = 1.253498755699953471643360937905798940369232208332... - _Vaclav Kotesovec_, Sep 28 2019, updated Jul 19 2021

%p with(combinat):

%p b:= proc(n, i) option remember; series(`if`(n=0, 1,

%p `if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*

%p multinomial(n, n-i*j, i$j), j=0..n/i))), x, 3)

%p end:

%p a:= n-> coeff(b(n$2), x, 2):

%p seq(a(n), n=0..25);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[x^Sign[j] b[n - i*j, i - 1] multinomial[n, Join[{n - i*j}, Table[i, {j}]]], {j, 0, n/i}]]], {x, 0, 3}];

%t a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ *)

%Y Column k=2 of A327803.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Sep 26 2019