|
|
A351423
|
|
Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1 + log(1+x))))).
|
|
2
|
|
|
1, -3, 16, -124, 1270, -16243, 249776, -4494334, 92716855, -2158505443, 55996266046, -1602132913687, 50124833578256, -1702501170925098, 62391472267252322, -2453892459756494459, 103101294099324376489, -4608723131704380915202
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..18.
|
|
FORMULA
|
a(n) = T(n,5), T(n,k) = Sum_{j=1..n} Stirling1(n,j) * T(j,k-1), k>1, T(n,1) = (n-1)!.
|
|
MATHEMATICA
|
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 5]; Array[a, 18] (* Amiram Eldar, Feb 11 2022 *)
|
|
PROG
|
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+log(1+log(1+x)))))))
(PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 5);
|
|
CROSSREFS
|
Column k=5 of A351420.
Cf. A000359, A351428.
Sequence in context: A005119 A190291 A090135 * A188417 A327826 A157457
Adjacent sequences: A351420 A351421 A351422 * A351424 A351425 A351426
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Feb 11 2022
|
|
STATUS
|
approved
|
|
|
|