login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327827
Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 1.
3
0, 1, 2, 9, 40, 235, 1476, 11214, 91848, 859527, 8710300, 97675138, 1179954612, 15490520786, 217602374458, 3280028076615, 52571985879600, 895913825750191, 16140560853800556, 307048409240931810, 6143666813617775100, 129096480664676773542, 2840750997343361802150
OFFSET
0,3
FORMULA
a(n) ~ c * n!, where c = A247551 = 2.5294774720791526481801161542539542411787... - Vaclav Kotesovec, Sep 28 2019
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1, `if`(i=k, 0, k))+
`if`(i=k, 0, b(n-i, i, k)*binomial(n, i))))
end:
a:= n-> b(n, 1, 0)-b(n, 1$2):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]];
T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
a[n_] := T[n, 1];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A327801.
Sequence in context: A261047 A052846 A293152 * A056844 A220471 A213095
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 26 2019
STATUS
approved