login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 1.
3

%I #12 Dec 09 2020 15:06:11

%S 0,1,2,9,40,235,1476,11214,91848,859527,8710300,97675138,1179954612,

%T 15490520786,217602374458,3280028076615,52571985879600,

%U 895913825750191,16140560853800556,307048409240931810,6143666813617775100,129096480664676773542,2840750997343361802150

%N Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 1.

%H Alois P. Heinz, <a href="/A327827/b327827.txt">Table of n, a(n) for n = 0..450</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%F a(n) ~ c * n!, where c = A247551 = 2.5294774720791526481801161542539542411787... - _Vaclav Kotesovec_, Sep 28 2019

%p b:= proc(n, i, k) option remember; `if`(n=0, 1,

%p `if`(i>n, 0, b(n, i+1, `if`(i=k, 0, k))+

%p `if`(i=k, 0, b(n-i, i, k)*binomial(n, i))))

%p end:

%p a:= n-> b(n, 1, 0)-b(n, 1$2):

%p seq(a(n), n=0..23);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]];

%t T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);

%t a[n_] := T[n, 1];

%t a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 09 2020, after _Alois P. Heinz_ *)

%Y Column k=1 of A327801.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 26 2019