login
A331373
Decimal expansion of Sum_{k>=2} 1/(k! - 1).
3
1, 2, 5, 3, 4, 9, 8, 7, 5, 5, 6, 9, 9, 9, 5, 3, 4, 7, 1, 6, 4, 3, 3, 6, 0, 9, 3, 7, 9, 0, 5, 7, 9, 8, 9, 4, 0, 3, 6, 9, 2, 3, 2, 2, 0, 8, 3, 3, 2, 0, 1, 3, 4, 1, 7, 0, 6, 3, 8, 3, 4, 7, 1, 6, 6, 4, 0, 9, 5, 2, 4, 8, 2, 0, 4, 8, 9, 8, 7, 1, 7, 0, 8, 9, 0, 2, 4
OFFSET
1,2
COMMENTS
Erdős was interested in the question whether this constant is irrational.
REFERENCES
Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.
LINKS
Paul Erdős, On the irrationality of certain series: problems and results, in Alan Baker (ed.), New Advances in Transcendence Theory, Cambridge University Press, 1988, p. 102.
Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement Mathématique, Université de Genève, 1980, p. 62.
EXAMPLE
1.25349875569995347164336093790579894036923220833201...
MATHEMATICA
RealDigits[Sum[1/(k! - 1), {k, 2, 300}], 10, 100][[1]]
PROG
(PARI) suminf(k=2, 1/(k!-1)) \\ Michel Marcus, May 03 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 03 2020
STATUS
approved