The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327821 Number of legal Go positions on a board which is an n-cycle graph. 1
 1, 5, 19, 57, 161, 449, 1247, 3457, 9577, 26525, 73459, 203433, 563369, 1560137, 4320479, 11964673 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is a variation on A102620. LINKS Sébastien Palcoux, Is this representation of Go (game) irreducible? (version: 2019-09-22), MathOverflow. FORMULA a(n)/A102620(n) converges to 1.44066.... This would imply that a(n+1)/a(n) converges to 2.769292354... the real root of x^3 - 3*x^2 + x - 1 = 0. From Colin Barker, Sep 26 2019: (Start) G.f.: x*(1 + x + 3*x^2 - x^3) / ((1 - x)*(1 - 3*x + x^2 - x^3)). a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) - a(n-4) for n > 4. (End) From Zhujun Zhang, Sep 28 2020: (Start) a(n) = r_1^n + r_2^n + r_3^n - 2 where r_1, r_2 and r_3 are roots of x^3 - 3*x^2 + x - 1 = 0 for n > 0. a(n) = floor(r^n - 3/2) where r is the real root of x^3 - 3*x^2 + x - 1 = 0 for n > 2. (End) EXAMPLE A 2-cycle is a 1 X 2 grid so that a(2) = A102620(2) = A266278(1) = 5. A 4-cycle is a 2 X 2 grid so that a(4) = A094777(2) = A266278(2) = 57. PROG (SageMath) cpdef GoCycle(int n):    cdef int i, j, a, l    cdef list L, LL, T    LL=[]    for i in range(3**n):       L=Integer(i).digits(base=3, padto=n)       T=[L]       for j in range(n-1):          if L[j+1]<>L[j]:             T.append(L[j+1])       if len(T)>1 and T==T[-1]:          T.pop(0)       a=1       if 1 in T:          a=0          l=len(T)          if l>2:             for j in range(-2, l-2):                if not 1 in [T[j], T[j+1], T[j+2]]:                   a=1                   break       if a==0:          L=[j-1 for j in L]          LL.append(L)    return LL [len(GoCycle(i)) for i in range(1, 17)] CROSSREFS Cf. A094777, A102620, A266278, A268113. Sequence in context: A295776 A202658 A202118 * A201082 A109415 A029861 Adjacent sequences:  A327818 A327819 A327820 * A327822 A327823 A327824 KEYWORD nonn,more AUTHOR Sébastien Palcoux, Sep 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 09:12 EDT 2022. Contains 357104 sequences. (Running on oeis4.)