The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240946 Decimal expansion of the average distance traveled in three steps of length 1 for a random walk in the plane starting at the origin. 1
 1, 5, 7, 4, 5, 9, 7, 2, 3, 7, 5, 5, 1, 8, 9, 3, 6, 5, 7, 4, 9, 4, 6, 9, 2, 1, 8, 3, 0, 7, 6, 5, 1, 9, 6, 9, 0, 2, 2, 1, 6, 6, 6, 1, 8, 0, 7, 5, 8, 5, 1, 9, 1, 7, 0, 1, 9, 3, 6, 9, 3, 0, 9, 8, 3, 0, 1, 8, 3, 1, 1, 8, 0, 5, 9, 4, 4, 5, 4, 3, 8, 2, 1, 3, 1, 0, 8, 5, 3, 1, 3, 3, 6, 2, 2, 4, 1, 9, 5, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS J. M. Borwein, A. Straub, J. Wan, and W. Zudilin, Densities of short uniform random walks, arXiv:1103.2995 [math.CA], (11-August-2011) FORMULA Integral_(0..3) x*p(x) dx, where p(x) = 2*sqrt(3)/Pi*x/(3+x^2) * 2F1(1/3, 2/3; 1; x^2*(9-x^2)^2/(3+x^2)^3), 2F1 being the hypergeometric function. Re(3F2(-1/2, -1/2, 1/2; 1, 1; 4)). (3*2^(1/3))/(16*Pi^4)*Gamma(1/3)^6 + (27*2^(2/3))/(4*Pi^4)*Gamma(2/3)^6. EXAMPLE 1.5745972375518936574946921830765... MATHEMATICA (3*2^(1/3))/(16*Pi^4)*Gamma[1/3]^6 + (27*2^(2/3))/(4*Pi^4)*Gamma[2/3]^6 //   RealDigits[#, 10, 100]& // First (* updated May 20 2015 *) CROSSREFS Cf. A088538 (two steps). Sequence in context: A010488 A300081 A293843 * A343039 A021178 A201506 Adjacent sequences:  A240943 A240944 A240945 * A240947 A240948 A240949 KEYWORD nonn,cons,walk AUTHOR Jean-François Alcover, Aug 04 2014 EXTENSIONS More digits from Jean-François Alcover, May 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 23:41 EDT 2021. Contains 343868 sequences. (Running on oeis4.)