login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240948
Expansion of chi(x^5)^6 + x * chi(x)^6 in powers of x where chi() is a Ramanujan theta function.
1
1, 1, 6, 15, 26, 57, 102, 172, 276, 453, 743, 1128, 1698, 2539, 3780, 5531, 7882, 11238, 15918, 22259, 30861, 42438, 58110, 78909, 106392, 142872, 190698, 253179, 334266, 439581, 575956, 750613, 974316, 1260336, 1624702, 2086806, 2670162, 3406695, 4333590
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (chi(x) * chi(x^5))^6 - 4 * x * chi(x) * chi(x^5) in powers of x where chi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 / (eta(q) * eta(q^4)))^6 + (eta(q^10)^2 / (eta(q^5) * eta(q^20)))^6 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (320 t)) = f(t) where q = exp(2 Pi i t).
a(n) ~ exp(Pi*sqrt(n)) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Nov 29 2019
EXAMPLE
G.f. = 1 + x + 6*x^2 + 15*x^3 + 26*x^4 + 57*x^5 + 102*x^6 + 172*x^7 + ...
G.f. = q^-5 + q^-1 + 6*q^3 + 15*q^7 + 26*q^11 + 57*q^15 + 102*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^5, -x^5]^-6 + x QPochhammer[ x, -x]^-6, {x, 0, n}];
nmax = 40; CoefficientList[Series[x*Product[((1 + x^k)/(1 + x^(2*k)))^6, {k, 1, nmax}] + Product[((1 + x^(5*k))/(1 + x^(10*k)))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2019 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( x * (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^6 + (eta(x^10 + A)^2 / (eta(x^5 + A) * eta(x^20 + A)))^6, n))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = eta(x^2 + A)^2 * eta(x^10 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^20 + A)); polcoeff( A^5 - 4 * x * A, n))};
CROSSREFS
Sequence in context: A284629 A022601 A112150 * A072257 A227952 A373384
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 04 2014
STATUS
approved