login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284629
Expansion of (eta(q)eta(q^10)/(eta(q^2)eta(q^5)))^6 in powers of q.
2
1, -6, 15, -26, 51, -96, 136, -186, 297, -422, 537, -792, 1198, -1608, 2208, -3194, 4290, -5550, 7480, -9906, 12672, -16648, 22038, -28344, 36641, -47796, 60801, -76624, 97710, -123216, 153362, -192954, 243072, -302028, 375639, -469122, 579486, -711432, 876864
OFFSET
1,2
LINKS
FORMULA
Convolution inverse of A132130.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n/5)) / (2*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 31 2017
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 19/2 + (5/2)*sqrt(5) - (1/2)*sqrt(450 + 206*sqrt(5)). - Simon Plouffe, Mar 02 2021
MATHEMATICA
CoefficientList[Series[(QPochhammer[q] QPochhammer[q^10]/(QPochhammer[q^2] QPochhammer[q^5]))^6, {q, 0, 50}], q] (* Indranil Ghosh, Mar 30 2017 *)
PROG
(PARI) q='q+O('q^39); Vec((eta(q)*eta(q^10)/(eta(q^2)*eta(q^5)))^6) \\ Indranil Ghosh, Mar 31 2017
CROSSREFS
Sequence in context: A213791 A008440 A340962 * A022601 A112150 A240948
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 30 2017
STATUS
approved