login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284631
a(n) = smallest odd k such that either k*2^n - 1 or k*2^n + 1 is prime.
3
1, 1, 1, 1, 1, 3, 1, 1, 7, 5, 3, 3, 1, 5, 5, 1, 1, 3, 1, 7, 7, 25, 13, 39, 5, 7, 15, 13, 7, 3, 1, 5, 9, 3, 25, 3, 15, 3, 5, 27, 3, 9, 3, 15, 7, 19, 27, 5, 19, 7, 17, 7, 51, 5, 3, 27, 29, 77, 27, 17, 1, 53, 9, 3, 9, 3, 9, 31, 23, 27, 39, 5, 15, 21, 5, 3, 29
OFFSET
1,6
COMMENTS
As N increases, (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} n) tends to log(2)/2 as seen by plotting data; this is consistent with the prime number theorem as the probability that x*2^n - 1 and x*2^n + 1 are prime is ~ 2/(n*log(2)) if n is great enough, so after n*log(2)/2 try (n*log(2)/2)*(2/n*log(2))=1.
For n=1 to 10000, a(n)/n is always < 3.2.
a(n)*2^n - 1 and a(n)*2^n + 1 are twin primes for n = 2, 6, 18, 63, 211, 546, 1032, 1156, 1553, 4901, 8335, 8529; corresponding values of a(n) are 1, 3, 3, 9, 9,297, 177, 1035, 291, 2565, 3975, 459.
LINKS
EXAMPLE
1*2^1 + 1 = 3 (prime), so a(1) = 1;
1*2^2 - 1 = 3 (prime), so a(2) = 1;
1*2^3 - 1 = 7 (prime), so a(3) = 1.
MATHEMATICA
Table[k = 1; While[Nor @@ Map[PrimeQ, k*2^n + {-1, 1}], k += 2]; k, {n, 77}] (* Michael De Vlieger, Apr 02 2017 *)
PROG
(PARI) a(n) = my(k=1); while (!isprime(k*2^n-1) && !isprime(k*2^n+1), k+=2); k; \\ Michel Marcus, Mar 31 2017
CROSSREFS
Sequence in context: A094507 A065625 A287213 * A154341 A348863 A202181
KEYWORD
nonn
AUTHOR
Pierre CAMI, Mar 30 2017
EXTENSIONS
Missing a(9153)-a(9163) in b-file inserted by Andrew Howroyd, Feb 27 2018
STATUS
approved