login
A287213
Number T(n,k) of set partitions of [n] such that the maximal absolute difference between consecutive elements within a block equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
15
1, 1, 1, 1, 1, 3, 1, 1, 7, 5, 2, 1, 15, 18, 13, 5, 1, 31, 57, 61, 38, 15, 1, 63, 169, 248, 215, 129, 52, 1, 127, 482, 935, 1061, 836, 495, 203, 1, 255, 1341, 3368, 4835, 4789, 3573, 2108, 877, 1, 511, 3669, 11777, 20973, 25430, 22986, 16657, 9831, 4140
OFFSET
0,6
COMMENTS
The maximal absolute difference is assumed to be zero if there is no block with consecutive elements.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k>=n and k>0.
LINKS
FORMULA
T(n,k) = A287214(n,k) - A287214(n,k-1) for k>0, T(n,0) = 1.
EXAMPLE
T(4,0) = 1: 1|2|3|4.
T(4,1) = 7: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34.
T(4,2) = 5: 124|3, 134|2, 13|24, 13|2|4, 1|24|3.
T(4,3) = 2: 14|23, 14|2|3.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1;
1, 7, 5, 2;
1, 15, 18, 13, 5;
1, 31, 57, 61, 38, 15;
1, 63, 169, 248, 215, 129, 52;
1, 127, 482, 935, 1061, 836, 495, 203;
MAPLE
b:= proc(n, k, l) option remember; `if`(n=0, 1, b(n-1, k, map(x->
`if`(x-n>=k, [][], x), [l[], n]))+add(b(n-1, k, sort(map(x->
`if`(x-n>=k, [][], x), subsop(j=n, l)))), j=1..nops(l)))
end:
A:= (n, k)-> b(n, min(k, n-1), []):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
MATHEMATICA
b[0, _, _] = 1; b[n_, k_, l_] := b[n, k, l] =b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]]], {j, 1, Length[l]}];
A[n_, k_] := b[n, Min[k, n - 1], {}];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[Table[T[n, k], {k, 0, Max[n - 1, 0]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
CROSSREFS
Row sums and T(n+2,n+1) give A000110.
T(2n,n) gives A294024.
Sequence in context: A343237 A094507 A065625 * A284631 A154341 A348863
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 21 2017
STATUS
approved