login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287213 Number T(n,k) of set partitions of [n] such that the maximal absolute difference between consecutive elements within a block equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows. 15
1, 1, 1, 1, 1, 3, 1, 1, 7, 5, 2, 1, 15, 18, 13, 5, 1, 31, 57, 61, 38, 15, 1, 63, 169, 248, 215, 129, 52, 1, 127, 482, 935, 1061, 836, 495, 203, 1, 255, 1341, 3368, 4835, 4789, 3573, 2108, 877, 1, 511, 3669, 11777, 20973, 25430, 22986, 16657, 9831, 4140 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The maximal absolute difference is assumed to be zero if there is no block with consecutive elements.

T(n,k) is defined for all n,k >= 0.  The triangle contains only the positive terms. T(n,k) = 0 if k>=n and k>0.

LINKS

Alois P. Heinz, Rows n = 0..23, flattened

Wikipedia, Partition of a set

FORMULA

T(n,k) = A287214(n,k) - A287214(n,k-1) for k>0, T(n,0) = 1.

EXAMPLE

T(4,0) = 1: 1|2|3|4.

T(4,1) = 7: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34.

T(4,2) = 5: 124|3, 134|2, 13|24, 13|2|4, 1|24|3.

T(4,3) = 2: 14|23, 14|2|3.

Triangle T(n,k) begins:

  1;

  1;

  1,   1;

  1,   3,   1;

  1,   7,   5,   2;

  1,  15,  18,  13,    5;

  1,  31,  57,  61,   38,  15;

  1,  63, 169, 248,  215, 129,  52;

  1, 127, 482, 935, 1061, 836, 495, 203;

MAPLE

b:= proc(n, k, l) option remember; `if`(n=0, 1, b(n-1, k, map(x->

      `if`(x-n>=k, [][], x), [l[], n]))+add(b(n-1, k, sort(map(x->

      `if`(x-n>=k, [][], x), subsop(j=n, l)))), j=1..nops(l)))

    end:

A:= (n, k)-> b(n, min(k, n-1), []):

T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):

seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);

MATHEMATICA

b[0, _, _] = 1; b[n_, k_, l_] := b[n, k, l] =b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]]], {j, 1, Length[l]}];

A[n_, k_] := b[n, Min[k, n - 1], {}];

T[n_, k_] :=  A[n, k] - If[k == 0, 0, A[n, k - 1]];

Table[Table[T[n, k], {k, 0, Max[n - 1, 0]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000012, A000225(n-1), A258109, A294052, A294053, A294054, A294055, A294056, A294057, A294058, A294059.

Row sums and T(n+2,n+1) give A000110.

T(2n,n) gives A294024.

Cf. A287214, A287215, A287416, A287640.

Sequence in context: A343237 A094507 A065625 * A284631 A154341 A348863

Adjacent sequences:  A287210 A287211 A287212 * A287214 A287215 A287216

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 22:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)