login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287640
Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows.
5
1, 1, 1, 1, 1, 4, 1, 13, 1, 1, 41, 9, 1, 1, 131, 59, 11, 1, 1, 428, 344, 88, 15, 1, 1, 1429, 1906, 634, 146, 23, 1, 1, 4861, 10345, 4389, 1231, 280, 39, 1, 1, 16795, 55901, 30006, 9835, 2763, 602, 71, 1, 1, 58785, 303661, 205420, 77178, 25014, 6967, 1408, 135, 1
OFFSET
0,6
LINKS
FORMULA
T(n,k) = A287641(n,k) - A287641(n,k-1) for k>0, T(n,0) = 1.
T(n+4,n+1) = A168415(n) for n>0.
EXAMPLE
T(4,0) = 1: 1234.
T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 1: 13|2|4.
T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5.
T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6.
T(6,4) = 1: 1345|2|6.
T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 13, 1;
1, 41, 9, 1;
1, 131, 59, 11, 1;
1, 428, 344, 88, 15, 1;
1, 1429, 1906, 634, 146, 23, 1;
1, 4861, 10345, 4389, 1231, 280, 39, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1,
[seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
end:
T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])):
seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]];
Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)
CROSSREFS
Columns k=0-1 give: A000012, A001453.
Row sums give A000110.
Sequence in context: A135704 A373394 A002564 * A322078 A019428 A303547
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 28 2017
STATUS
approved