login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168415
a(n) = 2^n + 7.
11
8, 9, 11, 15, 23, 39, 71, 135, 263, 519, 1031, 2055, 4103, 8199, 16391, 32775, 65543, 131079, 262151, 524295, 1048583, 2097159, 4194311, 8388615, 16777223, 33554439, 67108871, 134217735, 268435463, 536870919, 1073741831, 2147483655
OFFSET
0,1
COMMENTS
a(n) is prime <=> a(n) is in A104066 <=> n is in A057195 <=> 2^(n-1)*a(n) = A257272(n) is in A125247. - M. F. Hasler, Apr 27 2015
FORMULA
a(n) = 2*a(n-1) - 7, n > 1.
G.f.: (8 - 15*x)/((2*x - 1)*(x - 1)). - R. J. Mathar, Jul 10 2011
a(n) = A000079(n) + 7. - Omar E. Pol, Sep 20 2011
E.g.f.: exp(2*x) + 7*exp(x). - G. C. Greubel, Jul 22 2016
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1. - Elmo R. Oliveira, Nov 11 2023
MATHEMATICA
a[n_]:=2^n+7; a[Range[0, 200]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011*)
CoefficientList[Series[(8 - 15 x)/((2 x - 1) (x - 1)), {x, 0, 200}], x] (* Vincenzo Librandi, Sep 19 2013 *)
LinearRecurrence[{3, -2}, {8, 9}, 40] (* Harvey P. Dale, Mar 03 2014 *)
PROG
(PARI) a(n)=1<<n+7 \\ Charles R Greathouse IV, Sep 20 2011
(Magma) [2^n+7: n in [0..40]]; // Vincenzo Librandi, Sep 19 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 01 2009
STATUS
approved