login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n + 7.
11

%I #41 Nov 11 2023 19:56:12

%S 8,9,11,15,23,39,71,135,263,519,1031,2055,4103,8199,16391,32775,65543,

%T 131079,262151,524295,1048583,2097159,4194311,8388615,16777223,

%U 33554439,67108871,134217735,268435463,536870919,1073741831,2147483655

%N a(n) = 2^n + 7.

%C a(n) is prime <=> a(n) is in A104066 <=> n is in A057195 <=> 2^(n-1)*a(n) = A257272(n) is in A125247. - _M. F. Hasler_, Apr 27 2015

%H Vincenzo Librandi, <a href="/A168415/b168415.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F a(n) = 2*a(n-1) - 7, n > 1.

%F G.f.: (8 - 15*x)/((2*x - 1)*(x - 1)). - _R. J. Mathar_, Jul 10 2011

%F a(n) = A000079(n) + 7. - _Omar E. Pol_, Sep 20 2011

%F E.g.f.: exp(2*x) + 7*exp(x). - _G. C. Greubel_, Jul 22 2016

%F a(n) = 3*a(n-1) - 2*a(n-2) for n > 1. - _Elmo R. Oliveira_, Nov 11 2023

%t a[n_]:=2^n+7; a[Range[0,200]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 20 2011*)

%t CoefficientList[Series[(8 - 15 x)/((2 x - 1) (x - 1)), {x, 0, 200}], x] (* _Vincenzo Librandi_, Sep 19 2013 *)

%t LinearRecurrence[{3,-2},{8,9},40] (* _Harvey P. Dale_, Mar 03 2014 *)

%o (PARI) a(n)=1<<n+7 \\ _Charles R Greathouse IV_, Sep 20 2011

%o (Magma) [2^n+7: n in [0..40]]; // _Vincenzo Librandi_, Sep 19 2013

%Y Cf. A000079, A057195, A104066, A125247, A257272.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Dec 01 2009