login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168412
a(n) = n^5*(n^6 + 1)/2.
1
0, 1, 1040, 88695, 2097664, 24415625, 181402416, 988671775, 4294983680, 15690559329, 50000050000, 142655915831, 371504309760, 896080382665, 2024782853744, 4324878309375, 8796093546496, 17135948863745
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
FORMULA
G.f.: x*(1 + 1028*x + 76281*x^2 + 1101744*x^3 + 4869222*x^4 + 7861848*x^5 + 4869222*x^6 + 1101744*x^7 + 76281*x^8 + 1028*x^9 + x^10)/(1-x)^12. - Vincenzo Librandi, Jul 23 2016
a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12). - Wesley Ivan Hurt, Oct 02 2021
MATHEMATICA
Table[n^5*(n^6 + 1)/2, {n, 0, 25}] (* G. C. Greubel, Jul 22 2016 *)
CoefficientList[Series[x (1 + 1028 x + 76281 x^2 + 1101744 x^3 + 4869222 x^4 + 7861848 x^5 + 4869222 x^6 + 1101744 x^7 + 76281 x^8 + 1028 x^9 + x^10)/(1 - x)^12, {x, 0, 30}], x] (* Vincenzo Librandi, Jul 23 2016 *)
PROG
(Magma) [n^5*(n^6+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 29 2011
CROSSREFS
Sequence in context: A069456 A210259 A233854 * A183742 A252618 A231112
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved