login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168414
a(n) = (18*n - 9*(-1)^n - 3)/4.
1
6, 6, 15, 15, 24, 24, 33, 33, 42, 42, 51, 51, 60, 60, 69, 69, 78, 78, 87, 87, 96, 96, 105, 105, 114, 114, 123, 123, 132, 132, 141, 141, 150, 150, 159, 159, 168, 168, 177, 177, 186, 186, 195, 195, 204, 204, 213, 213, 222, 222, 231, 231, 240, 240, 249, 249, 258
OFFSET
1,1
FORMULA
a(n) = 9*n - a(n-1) - 6, n>1.
a(n) = 3*A168236(n). - R. J. Mathar, Jul 10 2011
G.f. 3*x*(2 + x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2011
a(n) = 6 + 9*Floor((n-1)/2). - Vincenzo Librandi, Sep 19 2013
From G. C. Greubel, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
E.g.f.: (3/4)*(-3 + 4*exp(x) +(6*x - 1)*exp(2*x))*exp(-x). (End)
MATHEMATICA
Table[6 + 9 Floor[(n - 1)/2], {n, 70}] (* or *) CoefficientList[Series[3 (2 + x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
LinearRecurrence[{1, 1, -1}, {6, 6, 15}, 60] (* Harvey P. Dale, May 17 2017 *)
PROG
(Magma) [6+9*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Set 19 2013
CROSSREFS
Sequence in context: A107620 A337538 A315809 * A266223 A256675 A362534
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 25 2009
EXTENSIONS
Definition replaced by Lava formula of Nov 2009. - R. J. Mathar, Jul 10 2011
STATUS
approved