login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168410 a(n) = 3 + 9*floor(n/2). 1
3, 12, 12, 21, 21, 30, 30, 39, 39, 48, 48, 57, 57, 66, 66, 75, 75, 84, 84, 93, 93, 102, 102, 111, 111, 120, 120, 129, 129, 138, 138, 147, 147, 156, 156, 165, 165, 174, 174, 183, 183, 192, 192, 201, 201, 210, 210, 219, 219, 228, 228, 237, 237, 246, 246, 255, 255 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1)

FORMULA

a(n) = 9*n - a(n-1) - 3, with n>1, a(1)=3.

a(n) = 3*(1 + 3*(-1)^n + 6*n)/4. - Paolo P. Lava, Nov 27 2009

G.f.: 3*x*(1 + 3*x - x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2011

a(n) = 3*A168233(n). - R. J. Mathar, Jul 10 2011

a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013

E.g.f.: (3/4)*(3 - 4*exp(x) + (6*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 21 2016

MATHEMATICA

Table[3 + 9 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[3 (1 + 3 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

PROG

(MAGMA) [3+9*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013

CROSSREFS

Cf. A017197, A168233.

Sequence in context: A018999 A279305 A217785 * A085272 A183508 A070732

Adjacent sequences:  A168407 A168408 A168409 * A168411 A168412 A168413

KEYWORD

nonn,easy,less

AUTHOR

Vincenzo Librandi, Nov 25 2009

EXTENSIONS

New definition by Vincenzo Librandi, Sep 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 10:19 EDT 2021. Contains 343995 sequences. (Running on oeis4.)