login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070732 Size of largest conjugacy class in the group GL(2,Z_n). 2
1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

FORMULA

a(n) is multiplicative. a(p^e) = (p+1) * p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.

a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003

From R. J. Mathar, Apr 14 2011: (Start)

Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/( (2^s+2)*zeta(2s-2)).

Dirichlet convolution of A000082 with a signed variant of A099892. (End)

Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019

MATHEMATICA

f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]

Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)

f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)

CROSSREFS

Cf. A062354.

Cf. A000010, A000056.

Cf. A000082, A099892.

Sequence in context: A168410 A085272 A183508 * A197208 A292624 A192788

Adjacent sequences:  A070729 A070730 A070731 * A070733 A070734 A070735

KEYWORD

nonn,mult,easy

AUTHOR

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

EXTENSIONS

Edited by Robert G. Wilson v, May 20 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 18:39 EDT 2022. Contains 357090 sequences. (Running on oeis4.)